An overview of the Greek Balancing Market

RAE EVENT 84th Thessaloniki International Fair

Dr. Ioannis Kampouris Chief Officer for Operations, Infrastructure and Market Independent Power Transmission Operator

IPTO: Company overview

TSO roles

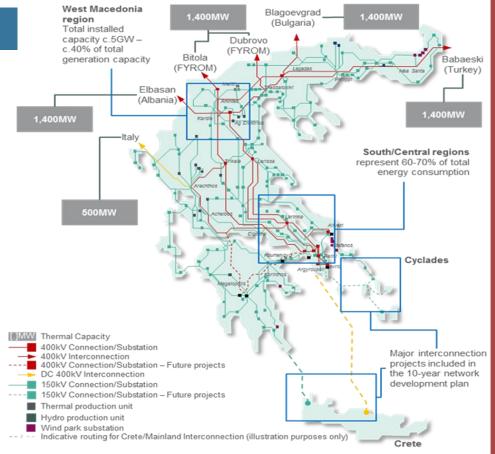
IPTO as Transmission Grid Operator

- System Maintenance; Design & Development (rolling 10yr Plan)
- User/3rd party interconnection projects (engineering services)
- System access to license holders for production, supply, or trading
- Cross-border Interconnections

IPTO as System Operator

- System dispatch & management
- Electricity supply contracts for ancillary services and settlement of imbalances
- Responsible for Balancing Market
 operation
- Other Market mechanisms (interruptibility, flexibility, CRM)

Hellenic Electricity Transmission


Interconnected Greek mainland & islands system in High Voltage (150kV) and extra-HV (400kV)

Backbone of 3, double-circuit, 400kV lines

Submarine cables to Ionian islands and Cyclades islands

Cross-border Interconnections

Plans to interconnect all island in the long term (2030)

Major Transmission Projects

ID	Project description	Expected commissioning year
1	First 400 kV branch to Peloponnese (OHL Megalopoli – Patras – Acheloos)	2019
2	Cycladic Islands interconnection (Phases A, B and C)	2020 (2018 for Phase A, 2019 for Phase B and 2020 for Phase C)
3	Crete interconnection (Phase I)	2020
4	Crete interconnection (Phase II)	2023
5	New 400 kV interconnector to Bulgaria N. Santa (GR) – Maritsa (BG)	2023
6	Second 400 kV branch to Peloponnese (OHL Megalopoli – Korinthos – Koumoundouros)	2024
7	Skiathos island interconnection	2020
8	Cycladic Islands interconnection (Phase D)	2024


The Greek Balancing Market

Balancing and Ancillary Services Markets

Balancing Market is the last of the four Target Model Markets.

"**Balancing**" refers to all TSO actions to ensure that demand is equal to supply, in and near real time.

- An efficient balancing market can ensure security of supply at the least cost.
- An important aspect of balancing is procurement of ancillary services.
- "Ancillary services" refer to a range of functions which a TSO contracts to guarantee system security.

Balancing Market Participants

- Balancing Service Entities (BSEs): Generating Units, Dispatchable RES Portfolio, Dispatchable Load Portfolio
- Balancing Responsible Entities (BREs): All above entities <u>plus</u>: Non-Dispatchable RES Portfolio, Non-Dispatchable Load Portfolio, RES FiT Portfolio, Interconnections (Imports and Exports)

Balancing Service Entities are represented by **Balancing Service Providers (BSPs)**, Balance Responsible Entities are represented by **Balance Responsible Parties (BRPs)**.

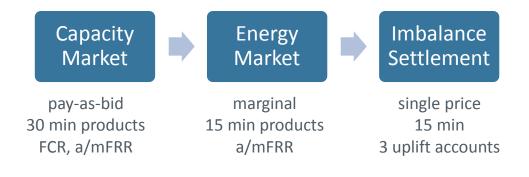
- All BSPs must pass certain pre-qualification tests
- > Participation in Balancing Market is **Unit-Based** except for aggregators

Balancing Market Structure

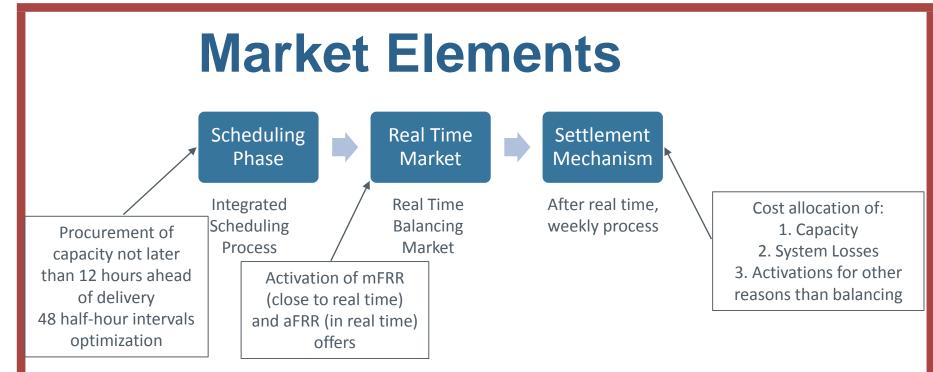
The Greek Balancing Market is based on the **Central Dispatch** principle.

The Balancing Market consists of:

- **Balancing Capacity Market**: The purpose of the capacity market is to ensure that enough resources are available before real time to provide the necessary reserves and that the resources are fairly remunerated.
- **Balancing Energy Market**: The purpose of the balancing energy market is to balance the system by activating upward or downward Balancing Energy Offers and that Balancing Energy activated is fairly remunerated.
- **Imbalances Settlement**: All imbalances from market schedules are remunerated at the imbalance price.



Market Design


Main Design Elements:

✓ Central Dispatch

✓ Unit-based participation (except RES and Load aggregators)

Balancing Market is executed after DA/ID Markets Sell and buy the necessary reserves for system security

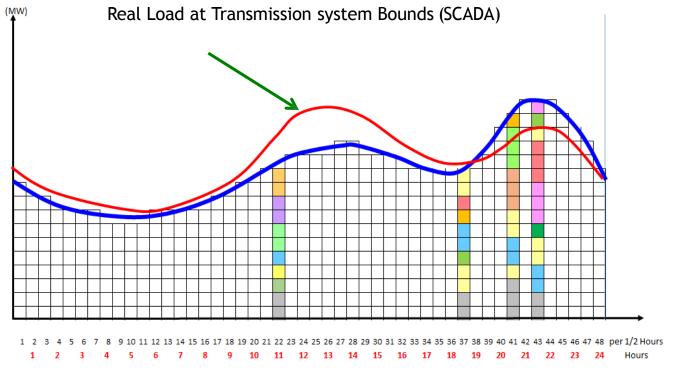
Additionally:

Cross-border management (congestion & capacity allocation) Metering management (15 mins validated measurements)

Balancing Market Operation

The TSO executes an Integrated Scheduling Process (ISP) to:

- proactively commit or de-commit Balancing Service Entities (BSEs)
- procure Reserves
- ensure network flows security in the Transmission System


The TSO solves close to real-time the optimization problem of the **Real-Time Balancing Energy Market** to:

 activate *mFRR* and *aFRR* Balancing Energy Offers by issuing real-time Dispatch Instructions and AGC Instructions to the Balancing Service Entities

The TSO clears all **Imbalances** at a single imbalance price for each Imbalance Settlement Period (15 mins)

mFRR: Manual Frequency Restoration Reserve; aFRR: Automatic Frequency Restoration Reserve; AGC: Automatic Generation Control

Market Schedule & Real Load

The Greek Balancing Market Scheduling Phase

Integrated Scheduling Process

Dispatch Period: 30 mins, duration 00:00 CET to 23:59 CET of D.

The ISP consists of 3 consecutive "planned" scheduling phases:

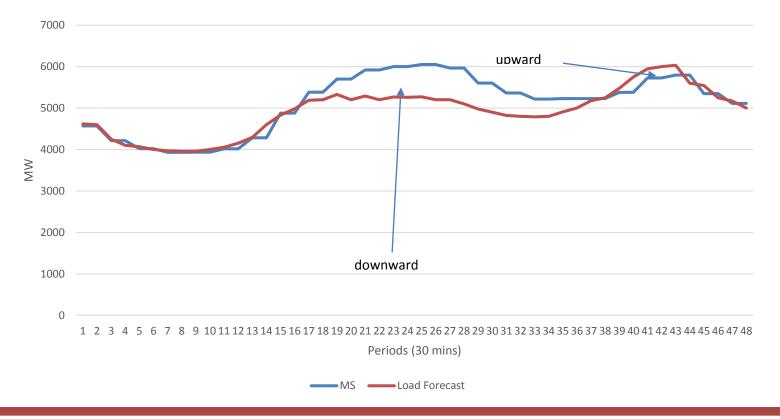
- day-ahead scheduling phase (ISP1) executed at D-1 for all Dispatch Periods of Dispatch Day D (16:00-16:45 CET, D-1)
- scheduling phase (ISP2) executed at the last hour of D-1 for all Dispatch Periods of Dispatch Day D (23:00 – 23:45 CET, D-1)
- intraday scheduling phase (ISP3) executed during D for the last twenty-four (24) Dispatch Periods of D (10:30-11:15 CET, D)

Additionally, the TSO can perform an "ad hoc" non-scheduled ISP in cases of system major events.

Dispatch day		D-1						D-1 D																									
Dispatch hour	16	17	18	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	ISP 1								Non binding results																								
ISP sessions	(16:00-17:00 EET)								SP 2	2 Binding results Non binding results																							
ISP SESSIONS	(00:00	00-00:45 EET) ISP							SP 3	Binding results																
											(11:30-12:15 EET)																						

ISP Results

The ISP results provide:


- an commitment schedule of the Balancing Service Entities;
- the FCR, aFRR and mFRR awards per Balancing Service Entity and per Dispatch Period for the Dispatch Day;
- an **indicative energy schedule** of the Balancing Service Entities for each Dispatch Period of the Dispatch Day, called ISP Schedule.

The Integrated Scheduling Process results for awarded reserves are:

- ISP1: non-binding;
- ISP2: binding for the first 24 Dispatch Periods of D (12 hours);
- ISP3: binding for the last 24 Dispatch Periods of D for (12 hours).

FCR: Frequency Containment Reserve, mFRR: Manual Frequency Restoration Reserve; aFRR: Automatic Frequency Restoration Reserve

ISP Results

ISP objective

Objective Function

Minimization: Balancing Energy Costs + Balancing Capacity Costs

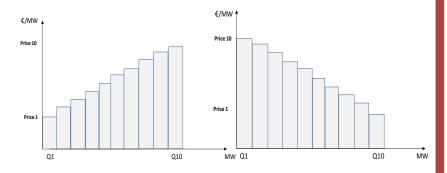
Subject to:

- Imbalance covering equation
- Unit operating state constraints (synchronization, stepwise soak, normal dispatch, stepwise desynchronization with linear decrease rate)
- Unit min/max power output in each operating state
- Unit max contribution to each type of Balancing Capacity
- Unit min up/down time constraints
- Unit max upward/downward ramping capability constraints
- Logical relations of the commitment binary variables
- Min/max Balancing Energy offered by the units per half-hour
- Min duration of a continuous delivery of Balancing Energy
- Min duration of the period between two Balancing Energy awards
- Logical relations of the Balancing Energy binary variables

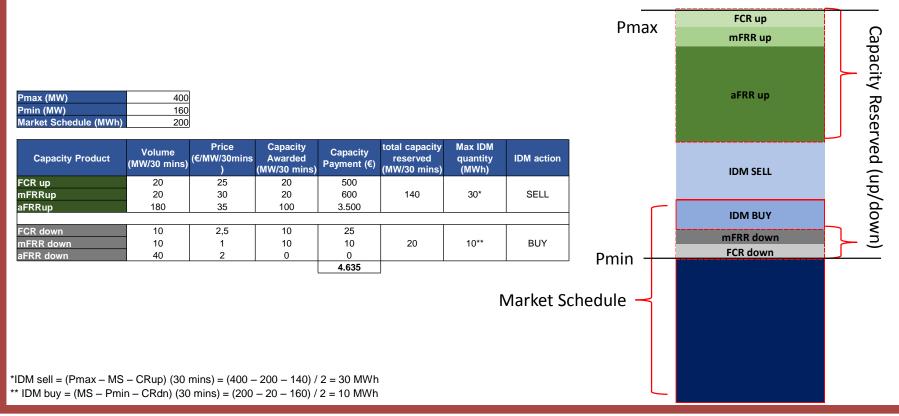
Products in the ISP

Capacity products (30 mins, €/MW):

- Upward and Downward FCR
- Upward and Downward aFRR
- Upward and Downward mFRR


(v):	Quantity (MW)	Price (€/MW/30mins)	Awarded Quantity (MW)	Payment (€/30mins)
Requirement	100	-	100	1150
Offer 1	30	5	30	150
Offer 2	40	10	40	400
Offer 3	50	20	30	600
Offer 4	50	25	0	0

Reserves remunerated at "*pay-as-bid price*" for the awarded quantity (for each 30 min dispatch period)


Energy products (30 mins, €/MWh):

30 mins upward/downward energy

Energy schedules in ISP are indicative

Capacity Offers Example

Real Time Balancing

The Balancing Energy Time Unit Interval for the Real-Time Balancing Energy Market is 15 minutes.

All ISP Balancing 30 mins Energy Offers are automatically converted into 15-minute offers.

All producers are obliged to submit offers for their remaining capacity from the last market schedule. BSPs can provide updated offers for either *mFRR* or *aFRR*, at a better price compared to the price submitted to the first ISP.

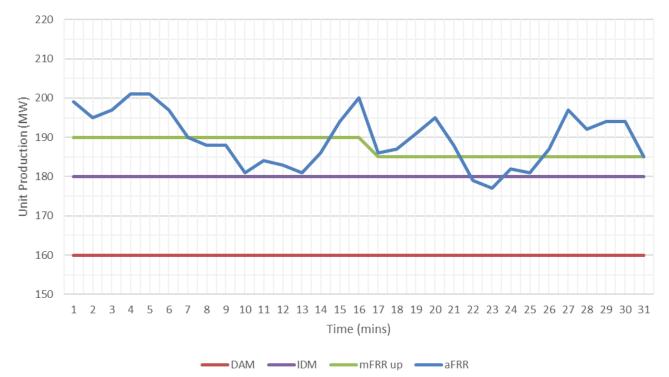
The TSO, based on short term forecast for the 15 minute real time unit:

- Computes zonal imbalances to be covered by the activation of Balancing Energy Offers
- Computes the residual available flows in the inter-zonal corridors for the solution of the *mFRR* process
- Issues Dispatch and AGC Instructions for BSPs

Products in RTBM

Energy products:

- 15 mins upward/downward mFRR (€/MWh)
- 15 mins upward/downward aFRR (€/MWh)


RTBM calculates a set point for mFRR per 15 mins. This set point is sent as instruction to the relevant BSPs.

aFRR offers are inputted in the EMS. The EMS sends instructions to selected BSPs every 4 secs.

The BSPs offering aFRR are selected according to the ISP solution.

If all aFRR sources selected from the ISP solution are depleted, then aFRR offers are sent to the rest of the relevant BSPs according to their aFRR offers.

Balancing Instructions Example

The Greek Imbalances Market

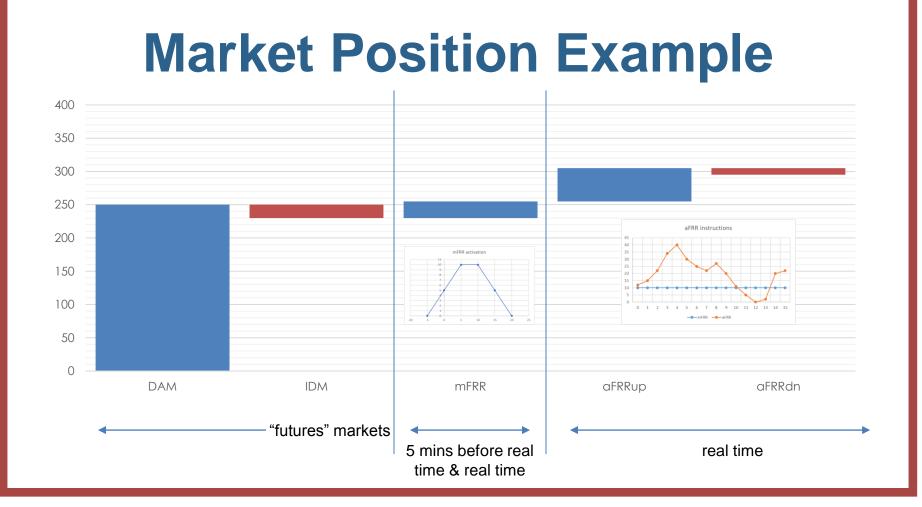
Calculation of Imbalances

After real time, the TSO calculates imbalances for all BRPs and BSPs according to market schedules and real time instructions.

For each 15 mins dispatch period, an Imbalance Settlement Price is calculated, according to the quantities and prices of all activated upward and downward offers for the total energy imbalance of the system.

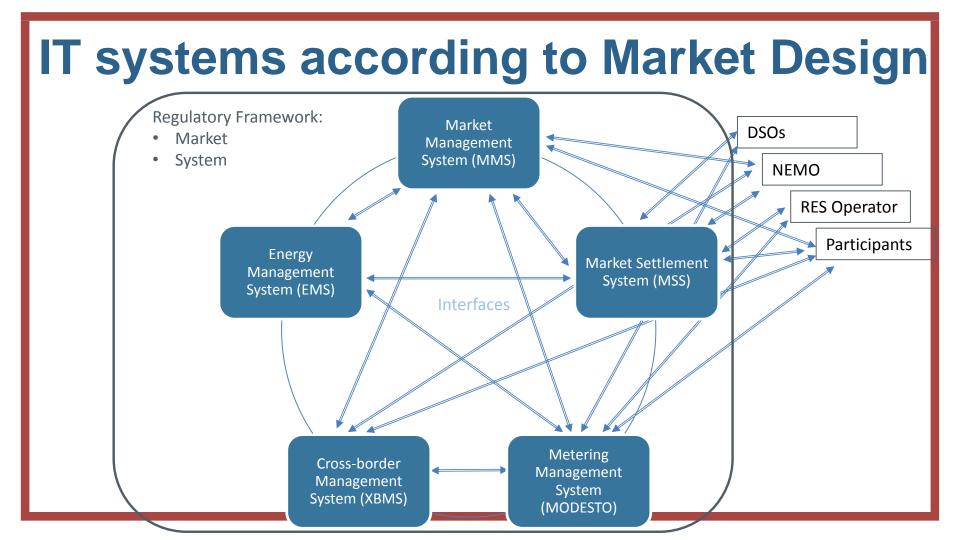
$$IP = \frac{Sum \ of: \ mFRRup \ \& \ aFRRdn \ \& \ mFRRip \ \& \ mFRRdn \ remuneration \ (in \ \mbox{\large \ \ })}{system \ imbalance \ (in \ MWh)}$$

Non compliance charges have been provisioned for BSPs not following TSO instructions or for BRPs major deviations between market and realized schedule.


Balancing Market Settlement

Settlement includes all calculations for: Balancing Energy, Redispatching Energy, Imbalances, Uplifts, Non Compliance Charges and Balancing Market Fees.

Uplift Accounts are applied to suppliers:


- UA-1: for the cost allocation of **System Losses**.
- UA-2: for the cost allocation of **Balancing Capacity**.
- UA-3: for the Financial Neutrality of the TSO

According to current design, all trading and all calculations will be performed by IPTO, while the HENEX Clearing House will perform financial settlement and risk management of the Greek Balancing Market.

Balancing Market IT Systems

IT Systems

Market Management System: ISP & RTBM (under development)

Market Settlement System: Market Settlement (under development)

Energy Management System: (in operation)

MODESTO: Metering (under development)

XBMS: Cross-border management system (under development)

It is expected that all Balancing Market Systems will be delivered by December 2019.

Roadmap for internal new market go-live

	ITEM	September 2019	October 2019	November 2019	December 2019	January 2020	February 2020	March 2020	April 2020	May 2020	June 2020
ologies	Zonal/System Capacity Market Requirements Baseline for demand response Calculation of Balancing Energy	Final Draft Submitted to RAE WIP	Submission to RAE Final Draft	Submission to RAE							
BMR Methodologies	Calculation of generators Average Thermal Cost Terms and Conditions for BSPs Terms and Conditions for BRPs Rules for suspension and restoration of market activities Rules for settlement in case of suspension of market activities	Dr. WIP WIP	IP aft Draft Final Draft	Draft Final Draft Final Draft Submission to RAE	Submission to RAE Submission to RAE	Submission to RAE					
MODETO	Shortage Pricing Function assessment Installation and customization of infrastructure and software Data Model Design and Implementation Implementation of Procedures & Calculations Functionality Testing Training	Dra Completed Completed W	IP WIP	Final Draft Delivery	Submission Delivery Training						
XBMS	Declaration for readiness for market coupling tests Explicit procedures Implicit procedures Readiness for go-live market coupling window		W	ЛР	w	Testing IP	Delivery	Testing	Delivery		
MMS	MUI to ISP solver integration MUI to RTBM solver integration Input of RTBM solver integration Input of market & technical data (MMS requirements) Delivery of standing data files to NEMO MUI integration to application servers & interfacing Test systems connection through VPN (NEMO-MMS) ISP standalone tests RTBM standalone tests MMS SAT for RTBM			·							
	Exchange data tests with NEMO NEMO final SAT MMS testing with market participants Common dry run with NEMO										
MSS	MSS FAT (OJT) MSS Training INSTut testing SW delivery Tests with participants data & external mockdata Tests with participants data & NEMO data		3 modules	4 modules							
Overall	IPTO Tests with participants IPTO - NEMO common Dry-Run Target Model Go-Live										

Thank you

Dr. Ioannis Kampouris Chief Officer for Operations, Infrastructure and Market

web: www.admie.gr e-mail: kabouris@admie.gr